(This post resulted from a conversation with Wei Dai.)
Formalizing the tiling agents problem is very delicate. In this post I’ll show a toy problem and a solution to it, which arguably meets all the desiderata stated before, but only by cheating in a new and unusual way.
Here’s a summary of the toy problem: we ask an agent to solve a difficult math question and also design a successor agent. Then the successor must solve another math question and design its own successor, and so on. The questions get harder each time, so they can’t all be solved in advance, and each of them requires believing in Peano arithmetic (PA). This goes on for a fixed number of rounds, and the final reward is the number of correct answers.
Moreover, we will demand that the agent must handle both subtasks (solving the math question and designing the successor) using the same logic. Finally, we will demand that the agent be able to reproduce itself on each round, not just design a custommade successor that solves the math question with PA and reproduces itself by quining.
