Intelligent Agent Foundations Forumsign up / log in
by Paul Christiano 452 days ago | Jessica Taylor likes this | link | parent

Having separate models \(P\) and \(Q\) is already quite weird; usually there would be a single model where values appear as latent structure.

You could legitimately complain that it seems very hard to construct such a model. And indeed I am skeptical that it will be possible. But if you want to fix problems arising from specifying \(Q\) rather than \(P\), it seems like you should say something about why specifying a separate \(Q\) is easier, or why someone would do it. At face value it looks equally difficult.

(Also, it is definitely not clear what algorithm you are referring to in this comment. Can you specify what computation the AI actually does / what kind of objects this \(P\) and \(Q\) are? The way I can see to make it work, \(P\) is a distribution over observations and \(Q\) is a distribution over values conditioned on observations. Is that right?)

by Stuart Armstrong 451 days ago | link

The model \(P\) is simply a model of human behaviour. It’s objective in the sense that it simply attempts to predict what humans will do in practice. It is, however, useless for figuring out what human values are, as it’s purely predictive of observations.

The model \(Q\) is an explanation/model for deducing human preferences or values, from observations (or predicted observations). Thus, given \(P\) and \(Q\), you can construct \(R\), the human reward function (note that \(P\), \(Q\), and \(R\) are all very different types of objects).

Simple possible \(Q\)’s would be \(Q_1\) = “everything the human does is rational” or \(Q_2\) = “everything the human does is random”.

So each \(Q\) contains estimates of rationality, noise, bias, amount of knowledge, and so on. Generally you’d want to have multiple \(Q\)’s and update them in terms of observations as well.


by Paul Christiano 451 days ago | link

What kind of object is \(Q\)? (I assume its not a string.) Are you directly specifying a distribution of preferences conditioned on observations? Are you specifying a distribution over observations conditioned on preferences and then using inference?

I assume the second case. So given that \(Q\) is a predictive model, why wouldn’t you also use \(Q\) as your model for planning? What is the advantage of using two separate models? Has anyone proposed using separate models in this way?

To the extent that your model \(Q\) is bad, it seems like you are just doomed to perform badly, and the you either need to abandon the model-based approach or come up with a better model. Adding a second model \(P\) doesn’t sound promising at face value.

It may be interesting or useful to have two models in this way, but I think it’s an unusual architecture that requires some discussion.






This is exactly the sort of
by Stuart Armstrong on Being legible to other agents by committing to usi... | 0 likes

When considering an embedder
by Jack Gallagher on Where does ADT Go Wrong? | 0 likes

The differences between this
by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Looking "at the very
by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Without reading closely, this
by Paul Christiano on Policy Selection Solves Most Problems | 1 like

>policy selection converges
by Stuart Armstrong on Policy Selection Solves Most Problems | 0 likes

Indeed there is some kind of
by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

Very nice. I wonder whether
by Vadim Kosoy on Hyperreal Brouwer | 0 likes

Freezing the reward seems
by Vadim Kosoy on Resolving human inconsistency in a simple model | 0 likes

Unfortunately, it's not just
by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

>We can solve the problem in
by Wei Dai on The Happy Dance Problem | 1 like

Maybe it's just my browser,
by Gordon Worley III on Catastrophe Mitigation Using DRL | 2 likes

At present, I think the main
by Abram Demski on Looking for Recommendations RE UDT vs. bounded com... | 0 likes

In the first round I'm
by Paul Christiano on Funding opportunity for AI alignment research | 0 likes

Fine with it being shared
by Paul Christiano on Funding opportunity for AI alignment research | 0 likes


Privacy & Terms