by Stuart Armstrong 453 days ago | link | parent No, that’s not it! Let me try to make it clearer. Let $$Q$$ be quite simple: the human always takes the optimal action. The predictive model $$P$$ predicts that, if given heroin, the human will take more, and, if not, will not. It seems that $$P$$ and $$Q$$ are in contradiction with each other, but that is because we are using a different model $$Q'$$ of human preferences. A valid model of human preferences, under $$Q$$, is that humans like heroin if it’s forced on them. Or, if you want to isolate this from the AI’s direct actions, that humans like heroin if $$X$$ happens, where $$X$$ is some unrelated event that happens if the AI forces heroin on the human, but not otherwise.

 by Paul Christiano 453 days ago | Jessica Taylor likes this | link Having separate models $$P$$ and $$Q$$ is already quite weird; usually there would be a single model where values appear as latent structure. You could legitimately complain that it seems very hard to construct such a model. And indeed I am skeptical that it will be possible. But if you want to fix problems arising from specifying $$Q$$ rather than $$P$$, it seems like you should say something about why specifying a separate $$Q$$ is easier, or why someone would do it. At face value it looks equally difficult. (Also, it is definitely not clear what algorithm you are referring to in this comment. Can you specify what computation the AI actually does / what kind of objects this $$P$$ and $$Q$$ are? The way I can see to make it work, $$P$$ is a distribution over observations and $$Q$$ is a distribution over values conditioned on observations. Is that right?) reply
 by Stuart Armstrong 452 days ago | link The model $$P$$ is simply a model of human behaviour. It’s objective in the sense that it simply attempts to predict what humans will do in practice. It is, however, useless for figuring out what human values are, as it’s purely predictive of observations. The model $$Q$$ is an explanation/model for deducing human preferences or values, from observations (or predicted observations). Thus, given $$P$$ and $$Q$$, you can construct $$R$$, the human reward function (note that $$P$$, $$Q$$, and $$R$$ are all very different types of objects). Simple possible $$Q$$’s would be $$Q_1$$ = “everything the human does is rational” or $$Q_2$$ = “everything the human does is random”. So each $$Q$$ contains estimates of rationality, noise, bias, amount of knowledge, and so on. Generally you’d want to have multiple $$Q$$’s and update them in terms of observations as well. reply
 by Paul Christiano 452 days ago | link What kind of object is $$Q$$? (I assume its not a string.) Are you directly specifying a distribution of preferences conditioned on observations? Are you specifying a distribution over observations conditioned on preferences and then using inference? I assume the second case. So given that $$Q$$ is a predictive model, why wouldn’t you also use $$Q$$ as your model for planning? What is the advantage of using two separate models? Has anyone proposed using separate models in this way? To the extent that your model $$Q$$ is bad, it seems like you are just doomed to perform badly, and the you either need to abandon the model-based approach or come up with a better model. Adding a second model $$P$$ doesn’t sound promising at face value. It may be interesting or useful to have two models in this way, but I think it’s an unusual architecture that requires some discussion. reply

### NEW DISCUSSION POSTS

This is exactly the sort of
 by Stuart Armstrong on Being legible to other agents by committing to usi... | 0 likes

When considering an embedder
 by Jack Gallagher on Where does ADT Go Wrong? | 0 likes

The differences between this
 by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Looking "at the very
 by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Without reading closely, this
 by Paul Christiano on Policy Selection Solves Most Problems | 1 like

>policy selection converges
 by Stuart Armstrong on Policy Selection Solves Most Problems | 0 likes

Indeed there is some kind of
 by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

Very nice. I wonder whether
 by Vadim Kosoy on Hyperreal Brouwer | 0 likes

Freezing the reward seems
 by Vadim Kosoy on Resolving human inconsistency in a simple model | 0 likes

Unfortunately, it's not just
 by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

>We can solve the problem in
 by Wei Dai on The Happy Dance Problem | 1 like

Maybe it's just my browser,
 by Gordon Worley III on Catastrophe Mitigation Using DRL | 2 likes

At present, I think the main
 by Abram Demski on Looking for Recommendations RE UDT vs. bounded com... | 0 likes

In the first round I'm
 by Paul Christiano on Funding opportunity for AI alignment research | 0 likes

Fine with it being shared
 by Paul Christiano on Funding opportunity for AI alignment research | 0 likes