by Jessica Taylor 617 days ago | Patrick LaVictoire likes this | link | parent I think the main problem with using a pre-specified distribution over actions is that, since it doesn’t reflect the AI’s actual behavior, you can’t say much about $$P(B= b | e)$$ in relation to real life. For example, maybe the implicit policy is to take random actions, which results in humans not pressing the shutdown button; therefore, in real life the AI is confident that the button will not be pressed, so it spends no resources looking at the shutdown button to see if it was pressed.

 by Patrick LaVictoire 614 days ago | link Maybe if the pre-specified distribution is a reasonably well-calibrated predictor of the AI (given that distribution)? Like, maybe this is a way that an Oracle AI could help ensure the safety of a somewhat weaker Tool AI. reply
 by Stuart Armstrong 613 days ago | link How about an iterated process? If you have a series of actions and observations $$e_n=a_no_na_{n-1}o_{n-1}\ldots$$, and $$A$$ is the set of possible actions, have the AI pick $$a$$ such that: $$a_{n} = \operatorname{argmax}_{a} \frac{1}{|A|}\sum_{a'\in A,b} U(ao_ne_{n-1}|B=b) P(B=b|a'o_ne_{n-1})$$ (the $$\frac{1}{|A|}$$ is not necessary, just a reminder that we are choosing a uniform distribution over the possible actions). Notice that the AI conditions correctly on all its past actions, but not its current hypothetical. I wonder how this would work if we set $$A={0,1}$$ and had the AI type out messages bit by bit, each time thinking the probability of $$B$$ was independent of its bit-choice? EDIT: What this means is that, as soon as it’s done any action that might cause the shutdown button to be pressed, it will then look at the shutdown button (but maybe doesn’t expect, ahead of time, that it will be looking at the button). reply
 by Jessica Taylor 613 days ago | link I think, to get $$P(B = b)$$, you have to have an implicit policy for the entire rest of the game (not just the next action $$a'$$). I like the idea of using the evidence you have so far to inform the $$P(b)$$, so you spend more effort on looking at the shutdown button if you expect shutdown might be imminent based on your evidence. Of course, you can combine this with the fixed point thing, so the distribution of $$a'$$ is the same as the distribution of $$a$$. My main concern is that this isn’t reflectively stable. If at an early time step the AI has a certain $$P(b)$$ distribution, it may want to modify into an agent that fixes this as the correct $$P(b)$$ rather than changing $$P(b)$$ in response to new evidence; this is because it is modelling $$B$$ as coming independently from $$P(b)$$. reply

### NEW DISCUSSION POSTS

This is exactly the sort of
 by Stuart Armstrong on Being legible to other agents by committing to usi... | 0 likes

When considering an embedder
 by Jack Gallagher on Where does ADT Go Wrong? | 0 likes

The differences between this
 by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Looking "at the very
 by Abram Demski on Policy Selection Solves Most Problems | 0 likes

 by Paul Christiano on Policy Selection Solves Most Problems | 1 like

>policy selection converges
 by Stuart Armstrong on Policy Selection Solves Most Problems | 0 likes

Indeed there is some kind of
 by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

Very nice. I wonder whether
 by Vadim Kosoy on Hyperreal Brouwer | 0 likes

Freezing the reward seems
 by Vadim Kosoy on Resolving human inconsistency in a simple model | 0 likes

Unfortunately, it's not just
 by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

>We can solve the problem in
 by Wei Dai on The Happy Dance Problem | 1 like

Maybe it's just my browser,
 by Gordon Worley III on Catastrophe Mitigation Using DRL | 2 likes

At present, I think the main
 by Abram Demski on Looking for Recommendations RE UDT vs. bounded com... | 0 likes

In the first round I'm
 by Paul Christiano on Funding opportunity for AI alignment research | 0 likes

Fine with it being shared
 by Paul Christiano on Funding opportunity for AI alignment research | 0 likes