A simple model of the Löbstacle post by Patrick LaVictoire 1498 days ago | Abram Demski and Jessica Taylor like this | discuss The idea of the Löbstacle is that basic trust in yourself and your successors is necessary but tricky: necessary, because naively modeling your successor’s decisions cannot rule out them making a bad decision, unless they are in some sense less intelligent than you; tricky, because the strongest patches of this problem lead to inconsistency, and weaker patches can lead to indefinite procrastination (because you always trust your successors to do the thing you are now putting off). (For a less handwavy explanation, see the technical agenda document on Vingean reflection.) It is difficult to specify the circumstances under which this kind of self-trust succeeds or fails. Here is one simple example in which it can succeed, but for rather fragile reasons. We will consider a sequential decision problem, where an agent’s payoff can depend on the actions of “later” agents in “later” universes. Even in the case where the identities of the later agents are known in advance and correspond closely to the current agent, the current agent can have difficulties in trusting the later ones. Each universe is defined with respect to the output of the current agent, and to the output of the next universe on the next agent: def $$U_n(a)$$: if $$a = \texttt{Quit'}$$: return 0 else if $$a = \texttt{Explode'}$$: return -10 else return $$2^{-n}+U_{n+1}(A_{n+1}())$$ Note that if $$A_n$$’s successors continue for a while but then explode, then $$A_n$$ should quit rather than continue; but if none of $$A_n$$’s successors explode, then $$A_n$$ should continue. So ideally, a sensible sequence of agents $$A_n$$ should continue indefinitely in this problem. We will consider a sequence of agents inspired by the descending search order version of modal UDT: def $$A_n()$$: for (a, u) in $$\{\texttt{Continue',Quit',Explode'}\}\times\textsf{Utilities}$$, sorted in decreasing order of $$u$$: if $$\textsf{PA}\vdash U_n(a)\geq u$$: return $$a$$ if still here: return some default action Here, $$\textsf{Utilities}$$ is a finite set of possible utilities, and we may choose it differently depending on $$n$$. In the language of the Vingean reflection paper, we have replaced the suggester-verifier architecture with a known order of proof searches (which may or may not succeed). We are also using a sequence of agents that use the same formal system, rather than a descending chain of formal systems in which each can prove the next one consistent. So in order to achieve self-trust, these agents will need to find some Löbian shortcuts. Let’s start with a failure of self-trust: Claim 1: If $$A_n$$ ever considers any utility $$-9-10$$, then $$A_n$$ will quit, even though $$A_{n+1}$$ will not explode. This is straightforward: since the inconsistency of Peano Arithmetic would imply that $$A_{n+1}$$ succeeds at its first proof check, and since PA cannot prove its own consistency, PA cannot prove that $$A_{n+1}()\neq\texttt{Explode'}$$, and so it cannot prove that $$A_n()=\texttt{`Continue'}\to U_n()> -9$$. So if $$A_n$$ considers any \(-9

### NEW DISCUSSION POSTS

[Note: This comment is three
 by Ryan Carey on A brief note on factoring out certain variables | 0 likes

There should be a chat icon
 by Alex Mennen on Meta: IAFF vs LessWrong | 0 likes

Apparently "You must be
 by Jessica Taylor on Meta: IAFF vs LessWrong | 1 like

There is a replacement for
 by Alex Mennen on Meta: IAFF vs LessWrong | 1 like

Regarding the physical
 by Vanessa Kosoy on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

I think that we should expect
 by Vanessa Kosoy on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

I think I understand your
 by Jessica Taylor on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

This seems like a hack. The
 by Jessica Taylor on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

After thinking some more,
 by Vanessa Kosoy on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

Yes, I think that we're
 by Vanessa Kosoy on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

My intuition is that it must
 by Vanessa Kosoy on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

To first approximation, a
 by Vanessa Kosoy on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

Actually, I *am* including
 by Vanessa Kosoy on The Learning-Theoretic AI Alignment Research Agend... | 0 likes

Yeah, when I went back and
 by Alex Appel on Optimal and Causal Counterfactual Worlds | 0 likes

> Well, we could give up on
 by Jessica Taylor on The Learning-Theoretic AI Alignment Research Agend... | 0 likes