Intelligent Agent Foundations Forumsign up / log in
by Tom Everitt 182 days ago | link | parent

My confusion is the following:

Premises (*) and inferences (=>):

  • The primary way for the agent to avoid traps is to delegate to a soft-maximiser.

  • Any action with boundedly negative utility, a soft-maximiser will take with positive probability.

  • Actions leading to traps do not have infinitely negative utility.

=> The agent will fall into traps with positive probability.

  • If the agent falls into a trap with positive probability, then it will have linear regret.

=> The agent will have linear regret.

So when you say in the beginning of the post “a Bayesian DIRL agent is guaranteed to attain most of the value”, you must mean that in a different sense than a regret sense?

by Vadim Kosoy 181 days ago | link

Your confusion is because you are thinking about regret in an anytime setting. In an anytime setting, there is a fixed policy \(\pi\), we measure the expected reward of \(\pi\) over a time interval \(t\) and compare it to the optimal expected reward over the same time interval. If \(\pi\) has probability \(p > 0\) to walk into a trap, regret has the linear lower bound \(\Omega(pt)\).

On other hand, I am talking about policies \(\pi_t\) that explicitly depend on the parameter \(t\) (I call this a “metapolicy”). Both the advisor and the agent policies are like that. As \(t\) goes to \(\infty\), the probability \(p(t)\) to walk into a trap goes to \(0\), so \(p(t)t\) is a sublinear function.

A second difference with the usual definition of regret is that I use an infinite sum of rewards with geometric time discount \(e^{-1/t}\) instead of a step function time discount that cuts off at \(t\). However, this second difference is entirely inessential, and all the theorems work about the same with step function time discount.






[Delegative Reinforcement
by Vadim Kosoy on Stable Pointers to Value II: Environmental Goals | 1 like

Intermediate update: The
by Alex Appel on Further Progress on a Bayesian Version of Logical ... | 0 likes

Since Briggs [1] shows that
by 258 on In memoryless Cartesian environments, every UDT po... | 2 likes

This doesn't quite work. The
by Nisan Stiennon on Logical counterfactuals and differential privacy | 0 likes

I at first didn't understand
by Sam Eisenstat on An Untrollable Mathematician | 1 like

This is somewhat related to
by Vadim Kosoy on The set of Logical Inductors is not Convex | 0 likes

This uses logical inductors
by Abram Demski on The set of Logical Inductors is not Convex | 0 likes

Nice writeup. Is one-boxing
by Tom Everitt on Smoking Lesion Steelman II | 0 likes

Hi Alex! The definition of
by Vadim Kosoy on Delegative Inverse Reinforcement Learning | 0 likes

A summary that might be
by Alex Appel on Delegative Inverse Reinforcement Learning | 1 like

I don't believe that
by Alex Appel on Delegative Inverse Reinforcement Learning | 0 likes

This is exactly the sort of
by Stuart Armstrong on Being legible to other agents by committing to usi... | 0 likes

When considering an embedder
by Jack Gallagher on Where does ADT Go Wrong? | 0 likes

The differences between this
by Abram Demski on Policy Selection Solves Most Problems | 1 like

Looking "at the very
by Abram Demski on Policy Selection Solves Most Problems | 0 likes


Privacy & Terms