Intelligent Agent Foundations Forumsign up / log in
by Sam Eisenstat 292 days ago | Jack Gallagher and Abram Demski like this | link | parent

In counterfactual mugging with a logical coin, AsDT always uses a logical inductor’s best-estimate of the utility it would get right now, so it sees the coin as already determined, and sees no benefit from giving Omega money in the cases where Omega asks for money.

The way I would think about what’s going on is that if the coin is already known at the time that the expectations are evaluated, then the problem isn’t convergent in the sense of AsDT. The agent that pays up whenever asked has a constant action, but it doesn’t receive a constant expected utility. You can think of the averaging as introducing artificial logical uncertainty to make more things convergent, which is why it’s more updateless. (My understanding is that this is pretty close to how you’re thinking of it already.)

by Abram Demski 284 days ago | Sam Eisenstat and Jack Gallagher like this | link

I think AsDT has a limited notion of convergent problem. It can only handle situations where the optimal strategy is to make the same move each time. Tail-dependence opens this up, partly by looking at the limit of average payoff rather than the limit of raw payoff. This allows us to deal with problems where the optimal strategy is complicated (and even somewhat dependent on what’s done in earlier instances in the sequence).

I wasn’t thinking of it as introducing artificial logical uncertainty, but I can see it that way.


by Sam Eisenstat 283 days ago | link

Yeah, I like tail dependence.

There’s this question of whether for logical uncertainty we should think of it more as trying to “un-update” from a more logically informed perspective rather than trying to use some logical prior that exists at the beginning of time. Maybe you’ve heard such ideas from Scott? I’m not sure if that’s the right perspective, but it’s what I’m alluding to when I say you’re introducing artificial logical uncertainty.


by Abram Demski 282 days ago | link

I don’t think it’s much like un-updating. Un-updating takes a specific fact we’d like to pretend we don’t know. Plus, the idea there is to back up the inductor. Here I’m looking at average performance as estimated by the latest stage of the inductor. The artificial uncertainty is more like pretending you don’t know which problem in the sequence you’re at.






If you drop the
by Alex Appel on Distributed Cooperation | 1 like

Cool! I'm happy to see this
by Abram Demski on Distributed Cooperation | 0 likes

Caveat: The version of EDT
by 258 on In memoryless Cartesian environments, every UDT po... | 2 likes

[Delegative Reinforcement
by Vadim Kosoy on Stable Pointers to Value II: Environmental Goals | 1 like

Intermediate update: The
by Alex Appel on Further Progress on a Bayesian Version of Logical ... | 0 likes

Since Briggs [1] shows that
by 258 on In memoryless Cartesian environments, every UDT po... | 2 likes

This doesn't quite work. The
by Nisan Stiennon on Logical counterfactuals and differential privacy | 0 likes

I at first didn't understand
by Sam Eisenstat on An Untrollable Mathematician | 1 like

This is somewhat related to
by Vadim Kosoy on The set of Logical Inductors is not Convex | 0 likes

This uses logical inductors
by Abram Demski on The set of Logical Inductors is not Convex | 0 likes

Nice writeup. Is one-boxing
by Tom Everitt on Smoking Lesion Steelman II | 0 likes

Hi Alex! The definition of
by Vadim Kosoy on Delegative Inverse Reinforcement Learning | 0 likes

A summary that might be
by Alex Appel on Delegative Inverse Reinforcement Learning | 1 like

I don't believe that
by Alex Appel on Delegative Inverse Reinforcement Learning | 0 likes

This is exactly the sort of
by Stuart Armstrong on Being legible to other agents by committing to usi... | 0 likes


Privacy & Terms