Intelligent Agent Foundations Forumsign up / log in
Finding reflective oracle distributions using a Kakutani map
discussion post by Jessica Taylor 356 days ago | Vadim Kosoy likes this | discuss

(follow-up to: A correlated analogue to reflective oracles)

Motivation

Suppose players are playing in a correlated equilibrium using a reflective oracle distribution. How does the equilibrium they play in vary as a function of the parameters of the game, or of the players’ policies? It turns out that the set of equilibria is a Kakutani map of the parameters to the game. This is a lot like it being a continuous map.

This might make it possible for players to reason about the effects of their policy on the equilibrium that they play (since the equilibrium is now a Kakutani map of the players’ policies).

Definitions

Let \(k\) be some natural number. We will consider reflective oracle distributions whose queries are parameterized on some vector in \(\theta \in \mathbb{R}^k\).

To do this, let the Turing machines \(\mathcal{M}\), instead of outputting a raw query, output a continuous function from \(\theta \in \mathbb{R}^k\) to the query. (The details of representing continuous functions don’t seem that important). The reflectivity condition on oracle distributions is now relative to \(\theta\) (since the queries depend on \(\theta\)).

Define the map

\[\mathrm{ParamsToDistrs}(\theta) := \{D \in \mathcal{D} | D \text{ is reflective relative to $\theta$ }\}\]

which maps the parameters \(\theta\) to the set of reflective oracle distributions for \(\theta\).

Theorem: \(\mathrm{ParamsToDistrs}\) is a Kakutani map.

Proof:

From the previous post, we have:

  • For each \(\theta\), \(\mathrm{ParamsToDistrs}(\theta)\) is nonempty (Theorem 1)
  • For each \(\theta\), \(\mathrm{ParamsToDistrs}(\theta)\) is convex (Theorem 2)

So it is sufficient to show that \(\mathrm{ParamsToDistrs}\) has a closed graph.

Let \(\theta_1, \theta_2, ...\) be an infinite sequence of \(\mathbb{R}^k\) values converging to \(\theta_\infty\). Let \(D_1, D_2, ...\) be an infinite sequence of oracle distributions in \(\mathcal{D}\) converging to \(D_\infty\). Assume that for each natural \(n\), \(D_n\) is reflective relative to \(\theta_n\). We will show that \(D_\infty\) is reflective relative to \(\theta_\infty\); this is sufficient to show that \(\mathrm{ParamsToDistrs}\) has a closed graph.

Let \(M \in \mathcal{M}\). Let \(a\) be such that \(D_\infty(O(M) = a) > 0\). Then \(D_\infty(O(M) = a) > \epsilon\) for some \(\epsilon > 0\). By convergence, there is some \(N\) such that for all \(n \geq N\), \(D_n(O(M) = a) > \epsilon\). By reflectivity of each \(D_n\) relative to \(\theta_i\), we have, for each \(n \geq N\),

\[a \in \mathrm{Eval}(M)(\theta_n)(\mathrm{Condition}(D_n, M, a))\]

Let \(q^\theta := \mathrm{Eval}(M)(\theta)\). Rewriting the above statement:

\[a \in \arg\max_{i \in \{1, ..., l(q)\}} \mathbb{E}_{D_n}[q^{\theta_n}_i(O)]\]

Consider the set \(\{(\theta, D) | a \in \arg\max_{i \in \{1, ..., l(q)\}} \mathbb{E}_D[q^\theta_i(O)]\}\). This is the intersection of a finite number of sets of the form \(\{(\theta, D) | \mathbb{E}_D[q^\theta_a(O) - q^\theta_i(O)] \geq 0\}\). Each of these sets is closed because \((\theta, D) \mapsto \mathbb{E}_D[q^\theta_a(O) - q^\theta_i(O)]\) is continuous (so the preimage of the closed set \(\{x | x \geq 0\}\) is closed). Therefore the set \(\{(\theta, D) | a \in \arg\max_{i \in \{1, ..., l(q)\}} \mathbb{E}_D[q^\theta_i(O)]\}\) is closed.

In total, this is sufficient to show \(a \in \arg\max_{i \in \{1, ..., l(q)\}} \mathbb{E}_{D_\infty}[q^{\theta_\infty}_i(O)]\). Therefore \(D_\infty\) is reflective relative to \(\theta_\infty\), as desired.

\(\square\)

An immediate consequence of this theorem is that the set of correlated equilibria of a normal-form game is a Kakutani map of the parameters of the game.



NEW LINKS

NEW POSTS

NEW DISCUSSION POSTS

RECENT COMMENTS

I think that in that case,
by Alex Appel on Smoking Lesion Steelman | 1 like

Two minor comments. First,
by Sam Eisenstat on No Constant Distribution Can be a Logical Inductor | 1 like

A: While that is a really
by Alex Appel on Musings on Exploration | 0 likes

> The true reason to do
by Jessica Taylor on Musings on Exploration | 0 likes

A few comments. Traps are
by Vadim Kosoy on Musings on Exploration | 1 like

I'm not convinced exploration
by Abram Demski on Musings on Exploration | 0 likes

Update: This isn't really an
by Alex Appel on A Difficulty With Density-Zero Exploration | 0 likes

If you drop the
by Alex Appel on Distributed Cooperation | 1 like

Cool! I'm happy to see this
by Abram Demski on Distributed Cooperation | 0 likes

Caveat: The version of EDT
by 258 on In memoryless Cartesian environments, every UDT po... | 2 likes

[Delegative Reinforcement
by Vadim Kosoy on Stable Pointers to Value II: Environmental Goals | 1 like

Intermediate update: The
by Alex Appel on Further Progress on a Bayesian Version of Logical ... | 0 likes

Since Briggs [1] shows that
by 258 on In memoryless Cartesian environments, every UDT po... | 2 likes

This doesn't quite work. The
by Nisan Stiennon on Logical counterfactuals and differential privacy | 0 likes

I at first didn't understand
by Sam Eisenstat on An Untrollable Mathematician | 1 like

RSS

Privacy & Terms