Intelligent Agent Foundations Forumsign up / log in
by Daniel Dewey 246 days ago | link | parent

I’m not sure you’ve gotten quite ALBA right here, and I think that causes a problem for your objection. Relevant writeups: most recent and original ALBA.

As I understand it, ALBA proposes the following process:

  1. H trains A to choose actions that would get the best immediate feedback from H. A is benign (assuming that H could give not-catastrophic immediate feedback for all actions and that the learning process is robust). H defines the feedback, and so A doesn’t make decisions that are more effective at anything than H is; A is just faster.
  2. A (and possibly H) is (are) used to define a slow process A+ that makes “better” decisions than A or H would. (Better is in quotes because we don’t have a definition of better; the best anyone knows how to do right now is look at the amplification process and say “yep, that should do better.”) Maybe H uses A as an assistant, maybe a copy of A breaks down a decision problem into parts and hands them off to other copies of A, maybe A makes decisions that guide a much larger cognitive process.
  3. The whole loop starts over with A+ used as H.

The claim is that step 2 produces a system that is able to give “better” feedback than the human could – feedback that considers more consequences more accurately in more complex decision situations, that has spent more effort introspecting, etc. This should make it able to handle circumstances further and further outside human-ordinary, eventually scaling up to extraordinary circumstances. So, while you say that the best case to hope for is \(r_i\rightarrow r\), it seems like ALBA is claiming to do more.

A second objection is that while you call each \(r_i\) a “reward function”, each system is only trained to take actions that maximize the very next reward they get (not sum of future rewards). This means that each system is only effective at anything insofar as the feedback function it’s maximizing at each step considers the long-term consequences of each action. So, if \(r_i\rightarrow r\), we don’t have reason to think that the system will be competent at anything outside of the “normal circumstances + a few exceptions” you describe – all of its planning power comes from \(r_i\), so we should expect it to be basically incompetent where \(r_i\) is incompetent.



by Stuart Armstrong 246 days ago | link

that is able to give “better” feedback than the human could – feedback that considers more consequences more accurately in more complex decision situations, that has spent more effort introspecting

This is roughly how I would run ALBA in practice, and why I said it was better in practice than in theory. I’d be working with considerations I mentioned in this post and try and formalise how to extend utilities/rewards to new settings.

reply

by Daniel Dewey 246 days ago | link

If I read Paul’s post correctly, ALBA is supposed to do this in theory – I don’t understand the theory/practice distinction you’re making.

reply

by Stuart Armstrong 243 days ago | link

I disagree. I’m arguing that the concept of “aligned at a certain capacity” makes little sense, and this is key to ALBA in theory.

reply



NEW LINKS

NEW POSTS

NEW DISCUSSION POSTS

RECENT COMMENTS

This is exactly the sort of
by Stuart Armstrong on Being legible to other agents by committing to usi... | 0 likes

When considering an embedder
by Jack Gallagher on Where does ADT Go Wrong? | 0 likes

The differences between this
by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Looking "at the very
by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Without reading closely, this
by Paul Christiano on Policy Selection Solves Most Problems | 1 like

>policy selection converges
by Stuart Armstrong on Policy Selection Solves Most Problems | 0 likes

Indeed there is some kind of
by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

Very nice. I wonder whether
by Vadim Kosoy on Hyperreal Brouwer | 0 likes

Freezing the reward seems
by Vadim Kosoy on Resolving human inconsistency in a simple model | 0 likes

Unfortunately, it's not just
by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

>We can solve the problem in
by Wei Dai on The Happy Dance Problem | 1 like

Maybe it's just my browser,
by Gordon Worley III on Catastrophe Mitigation Using DRL | 2 likes

At present, I think the main
by Abram Demski on Looking for Recommendations RE UDT vs. bounded com... | 0 likes

In the first round I'm
by Paul Christiano on Funding opportunity for AI alignment research | 0 likes

Fine with it being shared
by Paul Christiano on Funding opportunity for AI alignment research | 0 likes

RSS

Privacy & Terms