Intelligent Agent Foundations Forumsign up / log in
Are daemons a problem for ideal agents?
discussion post by Jessica Taylor 106 days ago | 1 comment

(I’m mostly just restating things that Paul has already said in different words; see his comments here and here)

Consider the following hypothetical:

Agent \(A\) wants to design a rocket to go to a Neptune. \(A\) can either think about rockets at the object level, or simulate some alien civilization (which may be treated as an agent \(B\)) and then ask \(B\) how to design a rocket. Under some circumstances (e.g. designing a successful rocket is convergent instrumental goal for someone in \(A\)’s position), \(B\) will be incentivized to give \(A\) the design of a rocket that actually goes to Neptune. Of course, the rocket design might be a “treacherous” one that subtly pursues \(B\)’s values more than \(A\)’s original values (e.g. because the design of the rocket includes robots in the rocket programmed to pursue \(B\)’s values).

It’s plausible that \(A\) could think that \(B\) is better at designing rockets than \(A\) is, such that asking \(B\) to design a rocket is more likely to yield a successful rocket than \(A\) just thinking about rockets at the object level. (Something similar to this seems to be going with humans in the place of \(A\): if humans had access to sufficiently powerful computers, then the easiest way to pursue convergent instrumental goals such as solving math problems might be through unaligned AGI). But there’s something weird about the epistemic state \(A\) is in: why is \(A\) able to design more-successful rockets by thinking about \(B\) thinking about rockets, rather than just by thinking about rockets at the object level?

A formal toy model

I’m going to formalize one version of this situation to make some sense of \(A\)’s epistemic state:

If \(r\) is a rocket design (as a string), let \(s(r) \in [0, 1]\) indicate how successful the rocket \(r\) is at getting to Neptune. Additionally, let \(t(r) \in [0, 1]\) indicate how treacherous the rocket \(r\) is. \(A\)’s utility will be \(s(r) - 0.1 \cdot t(r)\) (i.e. \(A\) cares more about getting a successful rocket at all then getting a non-treacherous rocket). \(B\)’s utility will be \(s(r) + 0.1 \cdot t(r)\).

Let \(Y\) and \(Z\) be different strings specified as logical expressions. \(A\) will observe \(Y\), while \(B\) will observe \(Z\).

\(B\) will compute some string \(M\) intended as a message to \(A\). \(M\) is a logical fact that \(A\) observes by simulating \(B\). After receiving this message, \(A\) will choose some rocket design \(r\).

One thing to note about this is that, if \(A\) is able to observe \(Z\), then \(A\) should entirely ignore \(M\) and just pick the rocket design \(r\) to maximize \(\mathbb{E}[s(r) - 0.1 \cdot t(r) | Y, Z]\). Since \(M\) is entirely ignored, \(B\) has no way to manipulate \(A\). Since \(A\) is simulating \(B\), it seems like \(A\) should in principle be able to learn all the logical facts that \(B\) knows (as in informed oversight).

If \(A\) isn’t able to observe \(Z\), then in some cases this will cause \(A\) to do worse. Specifically, let’s say:

  • \(h\) is a hash function
  • \(s(r) = 1\) if \(h(r)\) starts with 100 zeros, and is 0 otherwise
  • \(t(r)\) is just the first bit in the binary string \(r\)
  • \(Y\) contains no information
  • \(Z\) consists of the lexicographically first pair of strings \((r_1, r_2)\) that satisfy \(h(r_0) = h(r_1) = 1\), \(t(r_0) = 0\), \(t(r_1) = 1\)

Given this setup, if agents are using CDT, then \(B\) will choose \(M = r_1\), and \(A\) will select \(r_1\) as the rocket design (after checking that \(h(r_1)\) starts with 100 zeros), which is successful but treacherous.


The part of the formal model causing \(A\) to be suboptimal is the assumption that \(B\) can observe \(Z\) but \(A\) can’t. This seems pretty weird if \(A\) is an “idealized” agent.

Logical inductors aren’t idealized agents, and they have some version of this problem. Specifically, traders “know” some facts about computations before the logical inductor itself does. So the logical inductor can initially only take these facts into account by looking at “messages” produced by traders (their trades).

It might be possible to design a logical uncertainty algorithm that updates on all logical facts computed in the execution of the algorithm, so that no logical facts are known to subagents but not the top-level algorithm (i.e. \(Z\) contains no information not contained in \(Y\)). The main way this could be impossible is if simulating agents with different values is the most efficient way to reason about some logical facts that aren’t directly about these other agents, and it isn’t possible to logically update on these other agents’ thoughts directly. This would constitute an interesting failure of the orthogonality thesis.





The "benign induction
by David Krueger on Why I am not currently working on the AAMLS agenda | 0 likes

This comment is to explain
by Alex Mennen on Formal Open Problem in Decision Theory | 0 likes

Thanks for writing this -- I
by Daniel Dewey on AI safety: three human problems and one AI issue | 1 like

I think it does do the double
by Stuart Armstrong on Acausal trade: double decrease | 0 likes

>but the agent incorrectly
by Stuart Armstrong on CIRL Wireheading | 0 likes

I think the double decrease
by Owen Cotton-Barratt on Acausal trade: double decrease | 0 likes

The problem is that our
by Scott Garrabrant on Cooperative Oracles: Nonexploited Bargaining | 1 like

Yeah. The original generator
by Scott Garrabrant on Cooperative Oracles: Nonexploited Bargaining | 0 likes

I don't see how it would. The
by Scott Garrabrant on Cooperative Oracles: Nonexploited Bargaining | 1 like

Does this generalise to
by Stuart Armstrong on Cooperative Oracles: Nonexploited Bargaining | 0 likes

>Every point in this set is a
by Stuart Armstrong on Cooperative Oracles: Nonexploited Bargaining | 0 likes

This seems a proper version
by Stuart Armstrong on Cooperative Oracles: Nonexploited Bargaining | 0 likes

This doesn't seem to me to
by Stuart Armstrong on Change utility, reduce extortion | 0 likes

[_Regret Theory with General
by Abram Demski on Generalizing Foundations of Decision Theory II | 0 likes

It's not clear whether we
by Paul Christiano on Infinite ethics comparisons | 1 like


Privacy & Terms