Intelligent Agent Foundations Forumsign up / log in
by David Krueger 346 days ago | link | parent

I think the core of our differences is that I see minimally constrained, opaque, utility-maximizing agents with good models of the world and access to rich interfaces (sensors and actuators) as extremely likely to be substantially more powerful than what we will be able to build if we start degrading any of these properties.

These properties also seem sufficient for a treacherous turn (in an unaligned AI).



by Paul Christiano 340 days ago | link

I see minimally constrained, opaque, utility-maximizing agents with good models of the world and access to rich interfaces (sensors and actuators) as extremely likely to be substantially more powerful than what we will be able to build if we start degrading any of these properties.

The only point on which there is plausible disagreement is “utility-maximizing agents.” On a narrow reading of “utility-maximizing agents” it is not clear why it would be important to getting more powerful performance.

On a broad reading of “utility-maximizing agents” I agree that powerful systems are utility-maximizing. But if we take a broad reading of this property, I don’t agree with the claim that we will be unable to reliably tell that such agents aren’t dangerous without theoretical progress.

In particular, there is an argument of the form “the prospect of a treacherous turn makes any informal analysis unreliable.” I agree that the prospect of a treacherous turn makes some kinds of informal analysis unreliable. But I think it is completely wrong that it makes all informal analysis unreliable, I think that appropriate informal analysis can be sufficient to rule out the prospect of a treacherous turn. (Most likely an analysis that keeps track of what is being optimized, and rules out the prospect that an indicator was competently optimized to manipulate our understanding of the current situation.)

reply



NEW LINKS

NEW POSTS

NEW DISCUSSION POSTS

RECENT COMMENTS

This is exactly the sort of
by Stuart Armstrong on Being legible to other agents by committing to usi... | 0 likes

When considering an embedder
by Jack Gallagher on Where does ADT Go Wrong? | 0 likes

The differences between this
by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Looking "at the very
by Abram Demski on Policy Selection Solves Most Problems | 0 likes

Without reading closely, this
by Paul Christiano on Policy Selection Solves Most Problems | 1 like

>policy selection converges
by Stuart Armstrong on Policy Selection Solves Most Problems | 0 likes

Indeed there is some kind of
by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

Very nice. I wonder whether
by Vadim Kosoy on Hyperreal Brouwer | 0 likes

Freezing the reward seems
by Vadim Kosoy on Resolving human inconsistency in a simple model | 0 likes

Unfortunately, it's not just
by Vadim Kosoy on Catastrophe Mitigation Using DRL | 0 likes

>We can solve the problem in
by Wei Dai on The Happy Dance Problem | 1 like

Maybe it's just my browser,
by Gordon Worley III on Catastrophe Mitigation Using DRL | 2 likes

At present, I think the main
by Abram Demski on Looking for Recommendations RE UDT vs. bounded com... | 0 likes

In the first round I'm
by Paul Christiano on Funding opportunity for AI alignment research | 0 likes

Fine with it being shared
by Paul Christiano on Funding opportunity for AI alignment research | 0 likes

RSS

Privacy & Terms